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LETTER TO THE EDITOR 

Self-organized criticality in ID traffic flow model with inflow or 
outflow 
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College of Engineering, Shiznoka University, Hamamatsu 432. Japan 

Received 17 October 1994, in final form 2 December 1994 

Abstract The asymmetric simple-exclusion model with parallel dynamics (the deterministic 
cellular automaton 184) is extended to take into account the exchange of c m  between different 
lanes on a multi-lane roadway. The tramc Row model is presented by the one-dimensional 
asymmetric exclusjon model with injection or extraction of panicles. The system is driven 
asymptotically into a steady state exhibiting a self-organized criticality. The typical interval (3) 
between consecutive jams scales as (s) '5 L" with Y = 0.62 iz 0.04 where L is the system 
size. It is shown that the jam-interval distribution n,?(L) satisfies the finit&ze scaling form 
",$(L) ;3 L-8 f(s/L") with 6 = 2". 

Recently, traflic problems have attracted considerable attention [I-51. Cellular automaton 
(CA) models are being applied successfully to simulations of traffic. The one-dimensional 
(ID) asymmetric simple-exclusion model can be formulated into traffic flow problems. The 
ID exclusion model is one of the simplest examples of a driven system 16.71. The model 
has  been extensively studied to understand systems of interacting particles [8,9]. The 
ID exclusion model has been used to study the microscopic structure of shocks [lo, 111 
and is closely linked to growth processes [ 12-14]. The two-dimensional versions of the 
asymmetric simple-exclusion model have been applied to the traffic-jam problem in an entire 
city [Z-5,151. 

Nagel and Schreckenberg [l]  extended the ID asymmetric exclusion model to take into 
account car velocity in order to simulate freeway traffic. They showed that a transition from 
laminar traffic flow to start-stop waves occurs with increasing car density, as is observed in 
actual freeway traffic. Musha and Higuchi [I61 found that traffic flow on a highway shows a 
l/f power s p e c " ,  by directly measuring the traffic flow on an actual highway. Nagatani 
[I71 &died the clustering of traffic in the extended asymmetric exclusion model taking into 
account the difference between the inherent velocities of individual cars. Ben-Naim et al 
[18] analysed the clustering of cars in a simple aggregation model. 

Very recently, Nagel and Hemann 1191 showed that the open boundary version of the 
model exhibits a self-organized criticality, providing enough input and output of mass at 
the boundaries. The concept of self-organized criticality attracted considerable attention 
[20,21]. Furthermore, Nagel [22] studied the lifetimes of simulated traffic jams for freeway 
traffic and found emergent traffic jams with a self-similar appearance. However, the CA 
model is not simple since it  is described by the CA rule of the seven states and the scaling 
behaviour depending upon the system size is unclear. 

In this letter, we present a ID traffic flow model with inflow or outflow of cars. The 
CA model is an extended version of the ID asymmetric simple-exclusion model to take into 
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account injection or extraction of particles. We investigate a self-organized criticality in the 
system. The CA model mimics the trafiic flow on a multi-lane roadway. The exchange of 
cars occurs between different lanes on the multi-lane roadway. The number of cars on a 
single lane fluctuates by inflow from other lanes or outflow to other lanes. The traffic flow on 
a single lane of the multi-lane roadway is described by the ID asymmetric simpleexclusion 
model with injection or extraction of particles. The ID asymmetric simple-exclusion model 
with parallel dynamics is consistent with the deterministic CA 184 [21. Introducing injection 
or extraction of particles into the simple CA model drives the system asymptotically into a 
steady state exhibiting a self-organized criticality. 

Our CA model is defined on a ID lattice of L sites with periodic boundary conditions. 
Each site is occupied by one car or it is empty. For an arbitrary configuration, one update 
of the system consists of two steps. The first step is performed in parallel for all the cars. 
The movement or halting of cars in the first step is the same as the I D  asymmetric simple- 
exclusion model with parallel dynamics. Each car moves ahead one step unless the forward 
nearest-neighbour site is occupied by another car. If a car is blocked ahead by another car, 
it does not move even if the blocking car moves out of the site during the same time step. 
Then the second step is performed. In the second step, a site is selected randomly. If its 
site is unoccupied by one car, a car is injected on its site. When its site is occupied by one 
car, the car is extracted from its site. 

We have performed simulations with the CA model starting with an ensemble of random 
initial conditions where the system size is L = 250-25000 and the initial density of cars is 
po = 0.0-1.0. Each run is calculated up to 103-105 time steps. The data are averaged over 
100 runs. For illustration, figure 1 shows a typical pattern of cars for the initial car density 
po = 0.2 up to 500 time steps, where the system size is L = 300. The vertical direction 
indicates that in which cars move ahead. The horizontal direction is that of time. A car 
is indicated by a dot. The trajectory of a car is indicated by a curve. The region of grey 
colour represents that in which cars move with an interval of two sites. The local density 
of cars is p = 0.5. Cars within the region move with the maximal velocity 1. The region 
of black colour represents the appearance of a traffic jam in which cars are stopped because 
they are blocked by other cars. The traffic jam propagates backward. There are traffic jams 
with various life times. We study the distribution of the interval between traffic jams in a 
steady state after sufficiently many time steps. We investigate whether or not the system 
is driven asymptotically to a steady state with a self-organized criticality, by starting from 
any initial density PO. 

Figure 2 shows the time evolution of the car density p until t = 500 for the initial 
density po  = 0.1, 0.3, 0.7 and 0.9, where L = 300. For any initial density pa, the car 
density p approaches a steady state of about p = 05. The density p fluctuates about the 
critical value p .  = 0.5. The steady-state concentration can be calculated analytically in 
the mean-field approximation. A particle is injected by the probability ( L  - N ) / L  and is 
extracted by the probability N I L  where N is the number of particles and L is the system 
size. The rate equation of particle number is described by 

dt 

The number N of particles is given by 
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Figure 1. The typical configunrion of c m  up to 5M) time steps for the initial car density 
po = 0.2, where the system size is L = 300. The vertical and horizontal directions indicate 
respaetively those of spce  and time. A CK is indicated by a dot The tajectory of a 01 is 
represented by 3 CUNC. The region of grey colour represents that in which cars move with the 
interval of two sites. The region of black colour represents the nppearance of a traffic jam in 
which cars we stopped by the blocking of other cars. 
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Figure 2 The time evolution of the car density p up to 
I = 500 for the initial densities po = 0.1, 0.3, 0.1 and 
0.9 where L = 300. For any initial density RI. the car 
density p approaches a steady state of about p = 0.5. 

Figure 3. The log-log plot of the typical interval (s) 
of traffic jams a g ~ n s t  the system size L. The intenVal 
(T) scales as (s) % Lo."'.'". 

where No is the particle number at the initial state. In the limit oft -+ CO, the density 
p(= N I L )  approaches the critical value 0.5. 

There is a critical parameter in the model, namely the ratio R of the probabilities of 
putting in and taking out a car. R = 1 is the critical value, leading to the density p = 0.5 
which is a very special density of the asymmetric exclusion model with parallel update 
and without randomness. The fundamental diagram for the density and velocity has a 
non-analyticality at this density. When the density approaches the critical value 0.5, the 
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Figure 4. The log-log plot of the cumulative jam- 
interval distribution Ns against the intend I, for the 
system size L = 250, 500. 1000, 2500, 5000 and 
IO ow. 

Figure 5. The log-log plot of the resealed cumulative distribution Nh L".bz ag3inst the rescaled 
interval sL-n.62 for the data in figure 4. 

self-organized criticality will be maintained even if the density of lane-changing cars is kept 
constant with increasing L. 

We define the typical interval (s) of traffic jams as 

where s is the interval between consecutive jams and n, is the jam-interval distribution. 
Figure'3 shows the log-log plot of the jam interval (s) against the system size L. The 
interval (s) scales as 

(s) = L" with U = 0.62 * 0.04. (4) 

The cumulative interval distribution N$ is defined as 
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where n, is the jam-interval distribution. Figure 4 shows the log-log plot of the cumulative 
interval distribution N,  against interval s for the system size L = 250, 500, 1000, 2500, 
5000 and 10000. We plot the rescaled cumulative interval distribution against the rescaled 
interval. Figure 5 shows the log-log plot of the rescaled cumulative interval distribution 
N,vLo.62 against the rescaled interval for the data in  figure 4. A11 data collapse onto 
a single curve. The cumulative interval distribution satisfies the finite-size scaling form 

Therefore, the jam-interval distribution is described by the finite-size scaling form 

n,?(L) % L-Ff ( s /L")  with j 3  = 2w and v = 0.62 (7) 

where f ( x )  = g'(x) .  

of jam intervals equals the system size L: 
We derive the scaling relationship between the exponents j3  and v .  The total number 

The following scaling relationship is obtained: 

j3 = 2v. 

Thus, we find that the jam-interval distribution n,(L)  is described by the finite-size 
scaling (7) with the scaling relation (9). The finite-size scaling form (7) with the scaling 
relation (9) is consistent with that of the sandpile model with different values for the scaling 
exponents [21]. 

In summary, we have presented the ID asymmetric simple-exclusion model with 
injection or extraction of particles to investigate the effect of inflow or outtlow upon the 
traffic flow in a highway. We have found that introducing injection or extraction of particles 
into the asymmetric simpleexclusion model drives the system asymptotically into a steady 
state exhibiting a self-organized criticality. We have shown that the jam-interval distribution 
satisfies the finite-size scaling form. We have derived the scaling relation between the scaling 
exponents. 
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